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Abstract: Optimization is act of obtaining the best result under given 
circumstances. The aim of this study is to determine the effects of 
semi rigid connection in optimal design of frame structures. The 
design variables are the member sections where column and beam 
members are distinguished. The connection spring stiffness is also a 
design variable and is changed during the process in a 
predetermined range. The present study also has an objective to 
achieve least weight design of frame structures with semi-rigid 
connections, considering only flexural behavior, under applied loads. 
It is a discrete optimization problem in terms of the member sections 
and in terms of the rotational stiffnesses of end connections. 

The issue addressed here is multifold, since the objective function 
and the constraints are implicit functions of design variables. Thus 
two separate layers of analysis are proposed here. The first layer 
contents finding parameters of constraint equation using a special 
code developed in FORTRAN. The second layer contents 
optimization of frame structures of FEM results using program 
developed in EXCEL where constraints must be satisfied. And then 
optimization of bending moments and volume is achieved. The 
various numerical examples are performed and results are 
interpreted and discussed. 

1.  INTRODUCTION 

Optimization is referred to as the procedure used to make a 
system or design as effective or as functional as possible, 
involving various mathematical techniques. The objective 
functions, the design variables, the pre assigned parameters 
and the constraints describe an optimization problem. The 
quantities which describe an optimization problem can be 
divided into two groups: Pre assigned variables and design 
variables. In most practical cases, an infinite number of 
feasible designs exist. In order to find the best one, it is 
necessary to form a function of the variables to use it for 
comparison of design alternatives. The objective function is 

the function whose least, or greatest is sought in an 
optimization procedure.  

All of us are optimizers. We all make decisions that 
maximize our welfare in some way or another. Often the 
welfare we are maximizing may come later in life. By 
optimizing, it reflects our evaluation of future benefits versus 
current costs or benefits forgone. In economics, the extent to 
which we value future benefits today is reflected by what is 
called a discount rate. While economic criteria are only a part 
of everything we consider when making decisions, they are 
often among those deemed very important. So there is need to 
optimize semi rigid jointed frame by studying effects of semi 
rigid joint on frame structures.  

The different single objective optimization techniques 
make the designer able to determine the optimum sizes of 
structures, to get the best solution among several alternatives. 
The efficiencies of these techniques are different. A large 
number of algorithms have been proposed for the nonlinear 
programming solution. The choice of a particular algorithm 
for any situation depends on the problem formulation and the 
user.  

Several papers prove that in actual framed structures, 
rigid connections have some degree of flexibility, while 
pinned connections have some stiffness [1]. Three types of 
connection i.e. pinned, rigid and semi rigid were described in 
steel frames [2], [4]. The European Code (EC 3) for design of 
steel structures [2], [3] has adopted semi-rigid steel framing 
construction.  

Along with semi rigid beam to column connections, 
column to foundation connections in steel frames has been 
studied [5], [6]. M. Brognoli et. al.[7] studied optimal design 
of semi-rigid braced frames via knowledge-based approach. 
To achieve this structural optimization on a system analysis is 
used rather than on a component analysis. Ayse Daloglu et. 
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al.[8] and Alexandre A. Savio et. al.[9] studied optimal design 
of steel plane frames using genetic algorithm due to their 
ability of providing a solution to discrete optimum design 
problems. Aniko Csebfalvi et. al. inspected effects of semi 
rigid connections in optimal design of frame structures [10], 
[11]. K. N. Kadam studied about optimization of truss using 
genetic algorithm. 

This study presents various design constraints, design 
variables, objective function and formulation needed to satisfy 
all the constraints for optimization. By considering various 
design variables and design constraints optimal weight design 
of portal frame has done.  

2. SYSTEM DEVELOPMENT 

2.1 Definition of Optimization  
Optimization is the process of maximizing or minimizing a 
desired objective function while satisfying the prevailing 
constraints. It is act of obtaining the best result under given 
circumstances. In optimization of a design, the design 
objective could be simply to minimize the cost of production 
or to maximize the efficiency of production.  

2.2 Optimal Problem Formulation 
An optimal design is achieved by comparing a few alternative 
solutions created by using problem knowledge. In this method 
feasibility of each design solution is first investigated. 
Thereafter an estimate of underlying objective (cost, profit, 
etc.,) of each solution is compared and best solution is 
adopted. 
 

 

Figure 1. Flowchart of the generalized optimal design 
procedure 

It is impossible to apply single formulation procedure for all 
engineering design problems, since the objective in a design 
problem and associated therefore, design parameters vary 
product to product different techniques are used in  different 
problems. Purpose of formulation is to create a mathematical 
model of the optimal design problem, which then can be 
solved using an optimization algorithm. Figure 1 shows an 
outline of the steps usually involved in an optimal design 
formulation. 

2.3 Optimization Problem 
In this study the objective function is the least weight of the 
structure because the total cost is strongly depends on the 
actual price of raw materials and the actual cost of 
manufacturing. The maximum bending moment of semi-rigid 
beams under an applied member load has considered for the 
variation of the rotational stiffnesses of end connections will 
be adopted in this study. The minimum value of the maximum 
moments which can be achieved by adjusting connection 
stiffness has been presented.  

2.3.1 Definition of the design problem  
The cost of structure easily depends on cross-sectional 

areas of column elements as well as beam elements of 
structural member decides the material use and thus affect the 
cost. So cross section area are design variable. Here, the 
present study has an objective to the least weight design 
problem of frame structures with semi-rigid connections, 
considering only flexural behavior, under applied loads can be 
defined as a discrete optimization problem in terms of the 
member sections, Ai and in terms of the rotational stiffnesses 
of end connections, k. The design variables Ai are selected 
from a discrete set of the predetermined Ai ∈ B = {B1, 
B2,…..BN} cross-sectional areas of column elements, Aj ∈ C 
{C1, C2, …..,CN} cross-sectional areas of beam elements such 
that minimize the total weight, while rotational stiffnesses of 
end connections are changing in between a given equidistance 
range of kq ∈ k = {k1, k2, ……, kE} values. 
 
The objective function is 

W (Ai, Aj)        →           min!,                         (1) 
i = 1, 2,…., n        j= 1, 2,…, m 

where n is the number of column and m is the number of beam 
elements, q is the number of joints, N is the number of cross 
sectional catalogue values for columns, M the number of cross 
sectional catalogue values for beam elements, and E is the 
number of rotational stiffness value series. 

The discrete minimal weight design is subjected to size, 
displacement, and stress constraints. In order to satisfy the 
design constraints listed above, we have to determine the 
displacements and internal force distribution of the framed 
structure in terms of member cross sections and connection 
stiffness of joint springs. In this study, for structural analysis 
of a 2D frame with semi rigid joints a program is developed. 
The structural model is formulated as a combination of 3D 
quadratic beam elements and linear torsional springs. The 
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frame is defined in x, and y plane. Therefore, ux and uy 
displacements, θz rotation, Fx and Fy member forces, and Mz 
bending moment will be considered in the 3D coordinate 
system. The orientation of the beam and column sections is 
shown in Figure 3. 

2.3.2 Displacement constraints 
The displacement constraints are  

   uk -   ͞uk < 0 ,  k= 1,2,…,p                                       (2) 
where uk is the actual displacement value of the beam or 
column elements,  ͞uk is its upper bound, and p is the number 
of restricted displacements. 

2.3.3 Bending and Axial Tension Constraints of the 
Columns and Beams 
Constraints for normal stresses are computed from the 
maximal value of bending moments and from the related 
normal forces or from the maximal value of axial forces and 
related bending moments. 

୒
୤୷୅

+ ୑୸
୤୷୛୸

 ≤ 1                                          (3) 
where N is the actual axial force of the beam (Fx) or column 
(Fy) elements, Mz is the bending moment, Wz is the section 
modulus, and the fy is the yield stress, modified by the partial 
safety factor. 

2.3.4 Bending and axial compression constraints of the 
columns and beams 
The frames are defined in the x, y, and z global coordinate 
system where z is the bending axis. The frame members are 
loaded by bending and axial forces. Therefore, the overall 
flexural and torsional buckling constraints are formulated 
according to Euro code 3. We have to satisfy the following 
buckling constraints about the z axis: 

୒
χౖ୤୷୅

+ kz ୑୸
χై౐୤୷୛୸

 ≤ 1                                  (4) 

Where χz is the overall buckling factor for the axis z, χLT is the 
lateral-torsional buckling factor; kz is a modification factor in 
terms of the axial force effect. 
 
The overall buckling factor χz for the axis z is 

χz = ଵ

∅௭ାට∅௭మିఒ ͞೥
మ
 ,                                       (5) 

where 
ϕz = 0.5 [1+ αz (  ͞λz – 0.2)                              (6) 

                        αz =        0.21      h1/b1>1.2     
                                              If 
                                     0.34      h1/b1 1.2                     (7)                   
The slenderness ratio of the column 

 λ  ͞୸ =  ଶୌ
୰౰λు

                                                (8) 

And the slenderness ratio of the beam is 
  λ  ͞୸ =  ଵ.ଷ ୐

୰౰λు
                                               (9) 

where 

λ୉ = πට୉
୤
       ………         r୸ = ට୍౰

୅
                  (10) 

The lateral-torsional buckling factor χT is 
χT = ଵ

∅೅ାට∅೅
మିఒ ͞೅

మ
 ,                                   (11) 

where 
ϕT = 0.5 [1+ αT (  ͞λT – 0.2)+   λ͞T

2]                   (12) 
and 
                  αz =        0.49      h1/b1 >2     
                                             If 
                               0.34      h1/b1 2                            (13) 
The relative lateral-torsional factor is computed from the 
following formula: 

λ  ͞୘ = ට୛౰୤୷
୑ౙ౨

                                           (14) 

where Mcr in case of columns is replaced by 

Mcr = 11.132π2E୍౮
ୌ
ට୍౭
୍౮

+ ୌమୋ୍౪
πమ୉୍౮

                       (15) 

and in case of beams by 

Mcr = 11.132π2E
୍౯
୐ ට

୍౭
୍౯

+ ୐మୋ୍౪
πమ୉୍౯

                       (16) 

The kz factor is computed from the following formula replaced 
by the above defined variables: 

kz = 0.9[1+0.6λ  ͞୸
ே

χ୸ ୤୷୅
]                                   (17) 

The buckling constraints about the x axis for the column and 
about the y axis for the beam elements are follows 

୒
χ౤୤୷୅

 ≤ 1                                                  (18) 

where N is the actual axial force of the beam (Fx) or column 
(Fy) elements, χn is the overall buckling factor related to the x 
axis for the column and about the y axis for the beam 
elements. 
The overall buckling factor χn for the axis n = x of beam 
elements and n= y for the column elements is 

χn = ଵ

∅೙ାට∅೙
మିఒ ͞೙

మ
 ,                                         (19) 

where 
ϕn = 0.5 [1+ αn (  ͞λn – 0.2)+   λ͞n

2]                      (20) 
and 
             αn =        0.21      h1/b1 > 1.2     
                                         If 
                           0.49      h1/b1 ≤ 1.2                            (21) 
The slenderness ratio of the column 

 λ  ͞୷ =  ଶୌ
୰౯λు

                                                 (22) 

And the slenderness ratio of the beam is 
  λ  ͞୶ =  ଵ.ଷ ୐

୰౮λు
                                                 (23) 

2.4 Optimization Procedure 
The first design variables i.e. beam and column section are 
selected from available catalogue and the third design variable 
i.e. spring stiffness is chosen from a decided range with equal 
increments. A program for optimization is developed in 
EXCEL using the formulation proposed in article [12-13] and 
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all the combination of design variables are checked for 
constraints and the bending moment is then minimized. 

Based on the above system developed various 2D frames 
with semi rigid joint connections has solved. First the 
structural analysis is done using code developed in 
FORTRAN and then optimization of bending moments and 
volume is achieved using program developed in EXCEL.  

3. FORMULATION  

3.1 Optimization of semi rigid jointed plane frame 
The effects of semi-rigid connections are observed to the 
optimal design of steel frames. An example of planar frames is 
studied here. In this study, a simple-bay frame (shown in 
Figure 2) was considered where the objective function is the 
minimal weight (volume) of the structure subjected to the 
sizing, displacement, and stress constraints including the 
member buckling as well. The design variables are discrete 
variables of the cross section of beam and column members. 
According to the structural symmetry requirements, 
symmetrical members are grouped into the same variables. 

The applied material is prEN (Fe E 510) given according 
to the European Standard steel with a modulus of elasticity of 
210 000MPa and a yield stress of 355 MPa. The Poisson 
factor is 0.3, and the material density is 7850 kg/m3. Length 
of the frame is 30 m. and height is 6 m. The cross sections are 
chosen from the European section profiles. In the presented 
example the beam and column profiles are distinguished, and 
the cross sections have been selected from the catalogue of 
Table 1, and Table 2. The applied load is p=5 kN/m, according 
to the Figure 2. 

 
Figure 2. Semi-rigid single-bay frame 

 
Beam-to-column connections are varying from ideally-pinned 
to fully-rigid behavior. The changes of the rotational stiffness 
of beam- to-column connections play a relevant role in the 
optimal design problem while the structural response is 
changing as well. In order to expose this effect to the 
optimal design, the rotational stiffness between beam 
element and column element is applied.  

For pinned connections, the rotational stiffness of the 
connection tends to the zero. For rigid connections, the 

rotational stiffness of the connection tends to infinity, and in 
case of a more realistic design, the semi-rigid connection 

results a value in between infinity and zero. In this examples, 
the rotational stiffnesses of end connections are changing in 

between a given equidistance range of kq ∈  k = {{{                             1E4; 

5E4;1E5; 5E5;1E6; 5E6;1E7; 5E7  }  values. 

              
(a) Beam section type       (b) Column section type 
Figure 3. Cross-section orientations in the global 

coordinate system 
Table 1. Catalogue values of beam section types 

Section 
type 

h 
[c
m
] 

b 
[c
m] 

A 
[cm
2] 

It   
[cm
4] 

Iz   
[cm4] 

Iy  
[cm4] 

Iω 
[cm6] 

IPE 80 8 4.6 7.64 0.7 80.1 8.5 119 
IPE 100 1

0 
5.5 10.3

2 
1.2 171 15.9 354 

IPE 120 1
2 

6.4 13.2
1 

1.7 317.8 27.7 894 

IPE 140 1
4 

7.3 16.4
3 

2.5 541.2 44.9 1989 

IPE 160 1
6 

8.2 20.0
9 

3.6 869.3 68.3 3977 

IPE 180 1
8 

9.1 23.9
5 

4.8 1317 100.9 7459 

IPE 200 2
0 

10 28.4
8 

7 1943.
2 

142.4 13053 

IPE 220 2
2 

11 33.3
7 

9.1 2771.
8 

204.9 22762 

IPE 240 2
4  

12  39.1
2  

12.
9  

3891.
6  

283.6  37575 

IPE 270 2
7  

13.
5  

45.9
5  

15.
9  

5789.
8  

419.9  70849 

IPE 300 3
0  

15  53.8
1  

20.
1  

8356.
1  

603.8  12633
3 

IPE 330 3
3  

16  62.6
1  

28.
1  

11770  788.1  19987
7 

IPE 360 3
6  

17  72.7
3  

37.
3  

16270  1043.
5  

31464
5 

IPE 400 4
0  

18  84.4
6  

51.
1  

23130  1317.
8  

49214
7 

IPE 450 4
5  

19  98.8
2  

66.
9  

33740  1675.
9  

79424
5 

IPE 500 5
0  

20  115.5
2  

89.
3  

48200  2141.
7  

125425
3 

IPE 550 5
5  

21  134.4
2  

123.2  67120  2667.
6  

189315
4 

IPE 600 6
0  

22  155.9
8  

165.4  92080  3387.
3  

285858
5 

 
Table 2. Catalogue values of column section types 
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Section 
type 

h 
[cm] 

b 
[cm] 

A 
[cm2] 

It 
[cm4] 

Iz 
[cm4] 

Ix   
[cm4] 

Iω 
[cm6] 

HE  
120 B 

12 12 34.01 13.8 864.4 317.5 9431 

HE  
140 B 

14 14 42.96 20.1 1509.2 549.7 22514 

HE  
160 B 

16 16 54.25 31.2 2492 889.2 48038 

HE  
180 B 

18 18 65.25 42.2 3831.1 1362.8 93887 

HE  
200 B 

20 20 78.08 59.3 5696.2 2003.4 171413 

HE  
220 B 

22 22 91.04 76.6 8091 2843.3 295813 

HE  
240 B 

24 24 105.99 102.7 11260 3922.7 487675 

HE  
260 B 

26 26 118.44 123.8 14920 5134.5 754853 

HE  
280 B 

28 28 131.36 143.7 19270 6594.5 1131686 

 
For the selection there are 18 beam section profiles, 8 column 
section profiles and 8 rotational stiffnesses. So, there is need 
to analyze the frame 1296 times for several combinations of 
design variables, namely (beam section profiles, column 
section profiles and rotational stiffnesses). The optimization is 
carried out using the program done in EXCEL 2010 [12]. The 
design constraints are formulated in 3D coordinate system 
using equations (2)-(23). Using these equations design 
constraints are check for beam section profiles, column section 
profiles. If any combination satisfies all these constraints, then 
the program finds value of objective function and then the 
optimal solution for that frame is obtained. 

 
Table 3. Optimal volume of single bay frame (k= 1 E 04) 

Sr 
No
. 

Beam 
Sectio
n type 

Column 
Section 

type 

Axia
l 

force 
(kN) 

Bendin
g 

moment 
(kNm) 

Volum
e (cm3) 

1 IPE 
550 

HE 180 
B 

25.3
6 101.50 442410 

2 IPE 
550 

HE 200 
B 

30.0
1 120.10 450108 

3 IPE 
550 

HE 220 
B 

33.7
7 135.30 457884 

4 IPE 
600 

HE 160 
B 

15.6
5 62.63 500490 

5 IPE 
600 

HE 180 
B 

19.9
5 79.85 507090 

6 IPE 
600 

HE 200 
B 

23.9
6 95.92 514788 

7 IPE 
600 

HE 220 
B 

27.3
0 109.30 522564 

8 IPE HE 240 30.0 120.60 531534 

600 B 9 

9 IPE 
600 

HE 260 
B 

32.1
5 128.90 539004 

10 IPE 
600 

HE 280 
B 

33.7
5 135.30 546756 

 
In Table 3, only the combination of beam and column section 
are given, which satisfy all the constraint condition of the 
optimal solution for k= 1 E 04. From Table 3, it is seen that, 
though the volume of frame (combination of beam and column 
sections) is more than optimal volume, combination of more 
volume of frame does not satisfy all the constraints, so it is not 
optimal solution. Similarly, the volume of frame (combination 
of beam and column sections) is less than optimal volume, it 
not satisfy the all the constraints, and it is not optimal solution. 
Only those combinations are given in tables which satisfy all 
the constraints and these combinations are the optimal solution 
for the given frame. 

 
Table 4. Optimal volume of single bay frame for different 

k 

S
r 
N
o. 

Beam 
Sectio
n type 

Colu
mn 

Sectio
n type 

k 

Axi
al 

forc
e 

(kN) 

Bendi
ng 

mome
nt 

(kNm) 

Volu
me 

(cm3) 

1 IPE 
550 

HE 
180 B 

1 E 
04 

25.3
6 

101.5
0 

44241
0 

2 IPE 
550 

HE 
200 B 

1 E 
04 

30.0
1 

120.1
0 

45010
8 

3 IPE 
550 

HE 
220 B 

1 E 
04 

33.7
7 

135.3
0 

45788
4 

4 IPE 
600 

HE 
160 B 

1 E 
04 

15.6
5 62.63 50049

0 

5 IPE 
600 

HE 
180 B 

1 E 
04 

19.9
5 79.85 50709

0 

6 IPE 
600 

HE 
200 B 

1 E 
04 

23.9
6 95.92 51478

8 

7 IPE 
600 

HE 
220 B 

1 E 
04 

27.3
0 

109.3
0 

52256
4 

8 IPE 
600 

HE 
240 B 

1 E 
04 

30.0
9 

120.6
0 

53153
4 

9 IPE 
600 

HE 
260 B 

1 E 
04 

32.1
5 

128.9
0 

53900
4 

1
0 

IPE 
600 

HE 
280 B 

1 E 
04 

33.7
5 

135.3
0 

54675
6 

1
1 

IPE 
600 

HE 
180 B 

5 E 
04 

25.5
7 

102.3
0 

50709
0 

1
2 

IPE 
600 

HE 
200 B 

5 E 
04 

32.5
5 

130.3
0 

51478
8 

1
3 

IPE 
600 

HE 
220 B 

5 E 
04 

39.0
3 

156.3
0 

52256
4 

1
4 

IPE 
600 

HE 
240 B 

5 E 
04 

45.0
2 

180.4
0 

53153
4 

1 IPE HE 1 E 26.5 106.0 50709
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5 600 180 B 05 0 0 0 
1
6 

IPE 
600 

HE 
200 B 

1 E 
05 

34.0
8 

136.4
0 

51478
8 

1
7 

IPE 
600 

HE 
220 B 

1 E 
05 

41.2
4 

165.2
0 

52256
4 

1
8 

IPE 
600 

HE 
180 B 

5 E 
05 

106.
00 27.29 50709

0 
1
9 

IPE 
600 

HE 
200 B 

5 E 
05 

136.
40 35.40 51478

8 
2
0 

IPE 
600 

HE 
220 B 

5 E 
05 

165.
20 43.21 52256

4 
2
1 

IPE 
600 

HE 
180 B 

1 E 
06 

109.
20 27.40 50709

0 
2
2 

IPE 
600 

HE 
200 B 

1 E 
06 

141.
70 35.58 51478

8 
2
3 

IPE 
600 

HE 
220 B 

1 E 
06 

173.
00 43.46 52256

4 
2
4 

IPE 
600 

HE 
180 B 

5 E 
06 

27.4
8 

110.0
0 

50709
0 

2
5 

IPE 
600 

HE 
200 B 

5 E 
06 

35.7
2 

143.0
0 

51478
8 

2
6 

IPE 
600 

HE 
220 B 

5 E 
06 

43.6
7 

174.9
0 

52256
4 

2
7 

IPE 
600 

HE 
180 B 

1 E 
07 

27.4
9 

110.0
0 

50709
0 

2
8 

IPE 
600 

HE 
200 B 

1 E 
07 

35.7
3 

143.0
0 

51478
8 

2
9 

IPE 
600 

HE 
220 B 

1 E 
07 

43.7
0 

175.0
0 

52256
4 

3
0 

IPE 
600 

HE 
180 B 

5 E 
07 

27.5
0 

110.1
0 

50709
0 

3
1 

IPE 
600 

HE 
200 B 

5 E 
07 

35.7
5 

143.1
0 

51478
8 

3
2 

IPE 
600 

HE 
220 B 

5 E 
07 

43.7
1 

175.1
0 

52256
4 

 
Out of 1296 combinations of design variables, only 32 

combinations have satisfied constraints. Table 4 shows results 
of all these satisfactory 32 combination. Out of which some of 
volume are same due to same combinations but different 
rotational stiffness i.e. k. And from there, combination with 
less shear force and bending moment are considered as an 
optimal volume. It is found that for k= 1 E 04, the axial forces 
and bending moment are comparatively less than the other 
values of rotational stiffness. 

4. CONCLUSIONS 

Objective function for minimizing the weight is depends upon 
various parameters such as choice of design variables, 
constraints, organization of objective function and the factors 
related to it. Appropriate optimization has to be selected 
depending upon optimization problem and number of design 
variable. 

Due to optimization optimal solution can be achieved, 
which is economical. The optimal solutions highly depend on 
the structural geometry and on the loading conditions. Due to 
optimization optimized bending moments can be achieved.  
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